Extracting data of node set from odb in ABAQUS

I want to extract reaction force and displacement of a certain point, which is a reference point established in INTERACTION module and set as a geometry set named ‘SET-3’. The error information will pop up when using the codes I often use, as ‘KeyError: SET-3’, which can be seen in the second code part. I…

Simulation of a bolted T-stub with ABAQUS

About one year ago, I tried to analyze a bolted T-stub to test the analysis method of bolted connections and verify my abaqus model referring to a journal paper, unfortunately, I could not find that paper now. Though I would not focus on steel connections in the future, I still want to make a summary…

Fracture analysis of a metal specimen

I analyzed a specimen of ductile material with explicit dynamic method about one year ago. Recently, I want to review the model and summarize the process of analysis. Stress and strain of material in ABAQUS Stress and strain in the definition of material in abauqs should be converted to true stress \(\sigma\) and true plastic…

Probabilistic system analysis – Part III

Limit theorem Chebyshev’s inequality \begin{align} {\sigma ^2} &= \int {{{\left( {x – \mu } \right)}^2}{f_X}\left( x \right)dx} \\ &\ge \int_{ – \infty }^{u – c} {{{\left( {x – \mu } \right)}^2}{f_X}\left( x \right)dx} + \int_{u + c}^\infty {{{\left( {x – \mu } \right)}^2}{f_X}\left( x \right)dx} \\ &\ge {c^2}\int_{ – \infty }^{u – c} {{f_X}\left( x…

Probabilistic system analysis – Part II

Bernoulli process \begin{align} {\rm{P}}\left( {{\rm{sucess}}} \right) &= {\rm{P}}\left( {{X_i} = 1} \right) = p\\ {\rm{P}}\left( {{\rm{failure}}} \right) &= {\rm{P}}\left( {{X_i} = 0} \right) = 1 – p\\ {\rm{E}}\left[ {{X_t}} \right] &= p,{\mathop{\rm var}} \left( {{X_t}} \right) = p\left( {1 – p} \right) \end{align} PMF of # of arrivals (number of success \(S\) in \(n\) time…

Probabilistic system analysis – Part I

Independent and disjoint Two events are independent or disjoint are two different concept. If two events are independent, there is no relation between but they can happen together. It is noted that independence can be affected by conditioning. If two events are disjoint, they has the relation that when one happens the other cannot happen…

Differential equation – Part IV ODE system

ODE system \[\left\{ \begin{array}{l} {x^{\prime}} = f\left( {x,y,t} \right)\\ {y^{\prime}} = g\left( {x,y,t} \right) \end{array} \right.,x\left( {{t_0}} \right) = {x_0},y\left( {{t_0}} \right) = {y_0}\] Linear system: \[\left\{ \begin{array}{l} {x^{\prime}} = ax + by + {r_1}\left( t \right)\\ {y^{\prime}} = cx + dy + {r_2}\left( t \right) \end{array} \right.\] \(a\), \(b\), \(c\), \(d\) can be functions of \(t\). If they…

Differential equation – Part III Fourier series

Fourier Series To solve the ODE \({y^{\prime\prime}} + a{y^{\prime}} + by = f\left( t \right)\), in which \(f\left( t \right)\) is often the combination of \({e^t}\), \(\sin t\) and \(\cos t\), then any reasonable \(f\left( t \right)\) which is periodic, can be discontinuous but not terribly discontinuous, can be written as Fourier Series. \[f\left( t \right) = {c_0} +…

Differential equation – Part II Second-Order ODE

Linear 2nd order ODE with constant coefficients Homogeneous: \[{y^{\prime\prime}} + A{y^{\prime}} + By = 0\] Solution: \[y = {c_1}{y_1} + {c_2}{y_2}\] in which, \({y_1}\) and \({y_2}\) are two independent solutions of the homogeneous ODE. The basic method to solve this ODE is to try \(y = {e^{rt}}\). Plug in and we can get \[{r^2}{e^{rt}} +…

Warnings on keywords when importing input file to ABAQUS

I want to analyze a steel frame with pin connections at both sides or one side at some beams. I found the keyword *Release is very useful and convenient, so I resort to this keyword. I wrote the input file with the same syntax rules, so that it will be more convenient for me to…